Understanding the Problem:
- Maxwell's capacitance bridge is used to measure unknown inductance (\(L_1\)) and resistance (\(R_1\)).
- At balance, the impedance ratios of the bridge arms are equal.
- The Q factor (Quality Factor) of the coil is calculated using the formula \(Q = \frac{\omega L_1}{R_1}\).
Formulae:
- Balance condition for Maxwell's bridge: \(\frac{R_1}{R_2} = \frac{R_3}{R_4} + j\omega C_4 R_3\).
- Inductance calculation: \(L_1 = R_2 R_3 C_4\).
- Q factor: \(Q = \frac{\omega L_1}{R_1} = \omega C_4 R_4\).
Given Values:
- \(R_2 = 300 \, \Omega\)
- \(R_3 = 700 \, \Omega\)
- \(R_4 = 1500 \, \Omega\)
- \(C_4 = 0.8 \, \mu\text{F} = 0.8 \times 10^{-6} \, \text{F}\)
- Frequency (\(f\)) = 1100 Hz
- Angular frequency (\(\omega\)) = \(2\pi f = 2\pi \times 1100 \, \text{rad/s}\)
Calculating \(R_1\):
From the balance condition:
\(\frac{R_1}{R_2} = \frac{R_3}{R_4}\)
\(R_1 = R_2 \times \frac{R_3}{R_4}\)
\(R_1 = 300 \times \frac{700}{1500} = 140 \, \Omega\)
Calculating \(L_1\):
Using the inductance formula:
\(L_1 = R_2 R_3 C_4\)
\(L_1 = 300 \times 700 \times 0.8 \times 10^{-6}\)
\(L_1 = 168 \times 10^{-3} \, \text{H} = 0.168 \, \text{H}\)
Calculating Q Factor:
Using the Q factor formula:
\(Q = \omega C_4 R_4\)
\(Q = 2\pi \times 1100 \times 0.8 \times 10^{-6} \times 1500\)
\(Q = 2\pi \times 1100 \times 1.2 \times 10^{-3}\)
\(Q = 8.29\)
Final Answer:
\(R_1 = 140 \, \Omega\), \(L_1 = 0.168 \, \text{H}\), \(Q = 8.29\)