Question:

In Lineweaver-Burk plot, the plot between \( 1/v \) and \( 1/[S_0] \) yields a straight line with a y-intercept and slope value that equals to

Show Hint

The Lineweaver-Burk plot is useful in enzyme kinetics for determining \( K_m \) and \( v_{\text{max}} \).
Updated On: Sep 24, 2025
  • Intercept = \( \frac{1}{v_{\text{max}}} \); Slope = \( \frac{K_m}{v_{\text{max}}} \)
  • Intercept = \( \frac{2}{v_{\text{max}}} \); Slope = \( \frac{2K_m}{v_{\text{max}}} \)
  • Intercept = \( \frac{1}{2v_{\text{max}}} \); Slope = \( \frac{K_m}{v_{\text{max}}} \)
  • Intercept = zero; Slope = \( \frac{K_m}{v_{\text{max}}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Lineweaver-Burk Plot.
In the Lineweaver-Burk plot, the equation is given by: \[ \frac{1}{v} = \frac{K_m}{v_{\text{max}}} \cdot \frac{1}{[S_0]} + \frac{1}{v_{\text{max}}} \] This is in the form of a straight line \( y = mx + b \), where: - \( y = \frac{1}{v} \) - \( x = \frac{1}{[S_0]} \) - \( m = \frac{K_m}{v_{\text{max}}} \) (Slope) - \( b = \frac{1}{v_{\text{max}}} \) (Intercept)

Step 2: Conclusion.
Thus, the intercept is \( \frac{1}{v_{\text{max}}} \) and the slope is \( \frac{K_m}{v_{\text{max}}} \), which corresponds to option (1).

Was this answer helpful?
0
0