In hydrogen spectrum:
Shortest wavelength in Lyman series: $\dfrac{1}{\lambda_1} = R_H (1 - 0)$
Shortest wavelength in Balmer series: $\dfrac{1}{\lambda_2} = R_H \left(1 - \dfrac{1}{4}\right) = \dfrac{3R_H}{4}$
Now subtract the second from the first:
$\dfrac{1}{\lambda_1} - \dfrac{1}{\lambda_2} = R_H - \dfrac{3R_H}{4} = \dfrac{R_H}{4}$
So, $\dfrac{1}{\lambda_1} - \dfrac{1}{\lambda_2} = \dfrac{R_H}{4}$
Take LCM and solve: $\dfrac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2} = \dfrac{R_H}{4}$
$R_H = \dfrac{4(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}$
But this is the difference between $\dfrac{1}{\lambda_1}$ and $\dfrac{1}{\lambda_2}$, and $\dfrac{3R_H}{4}$ is $\dfrac{1}{\lambda_2}$, thus adjusting for the $\dfrac{3}{4}$ factor we get:
$R_H = \dfrac{4(\lambda_2 - \lambda_1)}{3 \lambda_1 \lambda_2}$