In an equilateral triangle $ABC$, if the area of its in-circle is $4\pi\ \text{cm}^2$, then find the length of the angle bisector $AD$?
Step 1: Find the inradius.
Area of in-circle $= \pi r^2 = 4\pi \Rightarrow r=2\ \text{cm}$.
Step 2: Relate $r$ and side $a$ of an equilateral triangle.
For an equilateral triangle, $r=\dfrac{\sqrt{3}}{6}\,a \Rightarrow a=\dfrac{6r}{\sqrt{3}}=\dfrac{12}{\sqrt{3}}=4\sqrt{3}\ \text{cm}$.
Step 3: Angle bisector equals altitude.
In an equilateral triangle, the angle bisector $AD$ is also the altitude: $AD=\dfrac{\sqrt{3}}{2}\,a = \dfrac{\sqrt{3}}{2}\cdot 4\sqrt{3}=\dfrac{4\cdot 3}{2}=6\ \text{cm}$. \[ \boxed{6\ \text{cm}} \]