Step 1: Calculate the amount of silver deposited.
The reaction at the cathode is:
\[
\text{Ag}^+ + e^- \rightarrow \text{Ag}.
\]
The amount of silver deposited is given by:
\[
m_{\text{Ag}} = \frac{I \cdot t \cdot M_{\text{Ag}}}{n \cdot F},
\]
where \( n = 1 \) (since 1 mole of Ag requires 1 mole of electrons), \( M_{\text{Ag}} = 107.9 \, \text{g/mol} \), and \( F = 96,485 \, \text{C/mol} \).
Substituting the values:
\[
m_{\text{Ag}} = \frac{0.7 \cdot 600 \cdot 107.9}{1 \cdot 96,485} = 0.469 \, \text{g}.
\]
Step 2: Calculate the amount of copper dissolved.
The reaction at the anode is:
\[
\text{Cu} \rightarrow \text{Cu}^{2+} + 2e^-.
\]
The amount of copper dissolved is given by:
\[
m_{\text{Cu}} = \frac{I \cdot t \cdot M_{\text{Cu}}}{2 \cdot F},
\]
where \( n = 2 \) (since 1 mole of Cu requires 2 moles of electrons), \( M_{\text{Cu}} = 63.55 \, \text{g/mol} \), and \( F = 96,485 \, \text{C/mol} \).
Substituting the values:
\[
m_{\text{Cu}} = \frac{0.7 \cdot 600 \cdot 63.55}{2 \cdot 96,485} = 0.138 \, \text{g}.
\]
Step 3: Conclusion.
The mass of silver deposited is 0.469 g, and the mass of copper dissolved is 0.138 g.
Final Answer: \[ 0.469 \, \text{g of Ag} \text{ and } 0.138 \, \text{g of Cu}. \]