Step 1: Known Information.
The mole fraction of water (\( X_{\text{water}} \)) is 40 times the mole fraction of glucose (\( X_{\text{glucose}} \)):
$$
X_{\text{water}} = 40 \cdot X_{\text{glucose}}
$$
Mole fraction is defined as:
$$
X_{\text{component}} = \frac{\text{moles of component}}{\text{total moles of all components}}
$$
Step 2: Express Mole Fractions.
Let:
\( n_{\text{water}} \): Moles of water
\( n_{\text{glucose}} \): Moles of glucose
The total number of moles in the solution is:
$$
n_{\text{total}} = n_{\text{water}} + n_{\text{glucose}}
$$
The mole fractions are:
$$
X_{\text{water}} = \frac{n_{\text{water}}}{n_{\text{total}}}, \quad X_{\text{glucose}} = \frac{n_{\text{glucose}}}{n_{\text{total}}}
$$
Given:
$$
X_{\text{water}} = 40 \cdot X_{\text{glucose}}
$$
Substitute the expressions for mole fractions:
$$
\frac{n_{\text{water}}}{n_{\text{total}}} = 40 \cdot \frac{n_{\text{glucose}}}{n_{\text{total}}}
$$
Simplify:
$$
n_{\text{water}} = 40 \cdot n_{\text{glucose}}
$$
Step 3: Calculate the Weight Percentage (w/w) of Glucose.
The weight percentage (w/w) of glucose is given by:
$$
\text{Weight \% of glucose} = \left( \frac{\text{mass of glucose}}{\text{total mass of solution}} \right) \times 100
$$
Step 3.1: Relate Moles to Masses.
Molar mass of water (\( M_{\text{water}} \)): \( 18 \, \text{g/mol} \)
Molar mass of glucose (\( M_{\text{glucose}} \)): \( 180 \, \text{g/mol} \)
Mass of water:
$$
\text{Mass of water} = n_{\text{water}} \cdot M_{\text{water}} = n_{\text{water}} \cdot 18
$$
Mass of glucose:
$$
\text{Mass of glucose} = n_{\text{glucose}} \cdot M_{\text{glucose}} = n_{\text{glucose}} \cdot 180
$$
Total mass of the solution:
$$
\text{Total mass} = \text{Mass of water} + \text{Mass of glucose} = n_{\text{water}} \cdot 18 + n_{\text{glucose}} \cdot 180
$$
Step 3.2: Substitute \( n_{\text{water}} = 40 \cdot n_{\text{glucose}} \).
From Step 2, we know:
$$
n_{\text{water}} = 40 \cdot n_{\text{glucose}}
$$
Substitute this into the expressions for mass:
$$
\text{Mass of water} = 40 \cdot n_{\text{glucose}} \cdot 18 = 720 \cdot n_{\text{glucose}}
$$
$$
\text{Mass of glucose} = n_{\text{glucose}} \cdot 180
$$
$$
\text{Total mass} = 720 \cdot n_{\text{glucose}} + 180 \cdot n_{\text{glucose}} = 900 \cdot n_{\text{glucose}}
$$
Step 3.3: Calculate the Weight Percentage.
The weight percentage of glucose is:
$$
\text{Weight \% of glucose} = \left( \frac{\text{Mass of glucose}}{\text{Total mass}} \right) \times 100
$$
Substitute the values:
$$
\text{Weight \% of glucose} = \left( \frac{180 \cdot n_{\text{glucose}}}{900 \cdot n_{\text{glucose}}} \right) \times 100
$$
Simplify:
$$
\text{Weight \% of glucose} = \left( \frac{180}{900} \right) \times 100 = \frac{180}{9} = 20
$$
Final Answer: \( \boxed{20} \)