Question:

In an aggregate mix, the proportions of coarse aggregate, fine aggregate and mineral filler are 55%, 40% and 5%, respectively. The values of bulk specific gravity of the coarse aggregate, fine aggregate and mineral filler are 2.55, 2.65 and 2.70, respectively. The bulk specific gravity of the aggregate mix (round off to two decimal places) is \(\underline{\hspace{2cm}}\).

Show Hint

The bulk specific gravity of the aggregate mix is calculated using the weighted average of the specific gravities of the components.
Updated On: Dec 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2.58

Solution and Explanation

The bulk specific gravity of the aggregate mix can be calculated using the weighted average method: \[ G_b = (G_{b1} \times V_1 + G_{b2} \times V_2 + G_{b3} \times V_3) / (V_1 + V_2 + V_3), \] where \( G_b \) is the bulk specific gravity of the aggregate mix, \( G_{b1} \), \( G_{b2} \), and \( G_{b3} \) are the bulk specific gravities of the coarse aggregate, fine aggregate, and mineral filler, and \( V_1 \), \( V_2 \), and \( V_3 \) are the volumes of coarse aggregate, fine aggregate, and mineral filler, respectively. Given that the proportions are 55%, 40%, and 5%, we calculate the weighted bulk specific gravity: \[ G_b = (2.55 \times 0.55 + 2.65 \times 0.40 + 2.70 \times 0.05) = 2.58. \] Thus, the bulk specific gravity of the aggregate mix is \( \boxed{2.58} \).
Was this answer helpful?
0
0

Questions Asked in GATE CE exam

View More Questions