At frequency $f$ ($f_1$):
$f_1 = \frac{1}{2\pi\sqrt{L(C_3 + C_d)}}$
$f = \frac{1}{2\pi\sqrt{L(C_3 + C_d)}}$
Squaring both sides:
$f^2 = \frac{1}{4\pi^2 L (C_3 + C_d)}$ (1)
At frequency $2f$ ($f_2$):
$f_2 = \frac{1}{2\pi\sqrt{L(C_4 + C_d)}}$
$2f = \frac{1}{2\pi\sqrt{L(C_4 + C_d)}}$
Squaring both sides:
$4f^2 = \frac{1}{4\pi^2 L (C_4 + C_d)}$ (2)
Divide equation (2) by equation (1):
$\frac{4f^2}{f^2} = \frac{\frac{1}{4\pi^2 L (C_4 + C_d)}}{\frac{1}{4\pi^2 L (C_3 + C_d)}}$
$4 = \frac{C_3 + C_d}{C_4 + C_d}$
$4(C_4 + C_d) = C_3 + C_d$
$4C_4 + 4C_d = C_3 + C_d$
$3C_d = C_3 - 4C_4$
$C_d = \frac{C_3 - 4C_4}{3}$
Therefore, the distributed capacitance is $\frac{C_3 - 4C_4}{3}$.