In a plane triangle, the sum of angles must be \( 180^\circ \). The observed sum is:
\[
\begin{aligned}
P + Q + R &= (40^\circ 19'02'') + (70^\circ 30'01'') + (69^\circ 11'00'') \\
&= 180^\circ 00'03''
\end{aligned}
\]
So, there's an excess of \( +3'' \). We apply least squares adjustment considering the weights to distribute the correction \( -3'' \) among the angles.
Let corrections be \( -x,\ -y,\ -z \) for \( P, Q, R \) respectively. The condition is:
\[
x + y + z = 3''
\]
Using weights \( w_P = 1,\ w_Q = 2,\ w_R = 1 \), we minimize:
\[
\phi = w_P x^2 + w_Q y^2 + w_R z^2 = x^2 + 2y^2 + z^2
\]
Using the method of Lagrange multipliers, the minimum occurs when:
\[
x = z = \lambda, \quad y = \frac{\lambda}{2}
\]
So,
\[
x + y + z = \lambda + \frac{\lambda}{2} + \lambda = \frac{5\lambda}{2} = 3'' \Rightarrow \lambda = \frac{6}{5} = 1.2''
\]
\[
x = z = 1.2'',\quad y = 0.6''
\]
Thus, the adjusted angles are:
\[
\hat{P} = 40^\circ 19'02'' - 1.2'' = 40^\circ 19'0.8''
\]
\[
\hat{Q} = 70^\circ 30'01'' - 0.6'' = 70^\circ 30'0.4''
\]
\[
\hat{R} = 69^\circ 11'00'' - 1.2'' = 69^\circ 10'58.8''
\]