According to the Von Mises yield criterion, the equivalent stress σv is given by:
\( \sigma_v = \sqrt{\sigma_1^2 - \sigma_1\sigma_2 + \sigma_2^2} \)
Substitute \( \sigma_1 = 785 \, \text{N/mm}^2 \) and \( \sigma_2 = 115 \, \text{N/mm}^2 \):
\( \sigma_v = \sqrt{785^2 - 785 \times 115 + 115^2} \)
\( \sigma_v = \sqrt{616225 - 90275 + 13225} = \sqrt{536175} \approx 734 \, \text{N/mm}^2 \)
Thus, the uni-axial yield stress is 734 N/mm².