The stoichiometry of the oxidation of carbon, hydrogen, and nitrogen can be written as:
\[
\text{C} + O_2 \to \text{CO}_2, \quad \text{H}_2 + \frac{1}{2} \text{O}_2 \to \text{H}_2O, \quad \text{N} + \frac{3}{2} \text{O}_2 \to \text{NH}_3.
\]
The molecular weight of \( C_{100}H_{250}O_{80}N \) is:
\[
\text{Molecular weight} = (100 \times 12) + (250 \times 1) + (80 \times 16) + (1 \times 14) = 1200 + 250 + 1280 + 14 = 2744 \, \text{g/mol}.
\]
For 1 tonne (1000 kg) of waste:
\[
\text{Moles of waste} = \frac{1000 \, \text{kg}}{2744 \, \text{g/mol}} = 0.364 \, \text{mol}.
\]
Now calculate the oxygen requirement for complete oxidation:
- Carbon: \( 100 \, \text{mol} \times \frac{1 \, \text{mol O}_2}{1 \, \text{mol C}} = 100 \, \text{mol O}_2 \),
- Hydrogen: \( 250 \, \text{mol} \times \frac{1 \, \text{mol O}_2}{2 \, \text{mol H}_2} = 125 \, \text{mol O}_2 \),
- Nitrogen: \( 1 \, \text{mol} \times \frac{3}{2} \, \text{mol O}_2 = 1.5 \, \text{mol O}_2 \).
Thus, the total oxygen required is:
\[
\text{Total O}_2 = 100 + 125 + 1.5 = 226.5 \, \text{mol O}_2.
\]
The volume of oxygen required is:
\[
\text{Volume of O}_2 = 226.5 \, \text{mol} \times 22.4 \, \text{L/mol} = 5085.6 \, \text{L} = 5.0856 \, \text{m}^3.
\]
Given the oxygen content of air is 23%, the total air required is:
\[
\text{Total air required} = \frac{5.0856}{0.23} = 22.1 \, \text{m}^3.
\]
Therefore, the required volume of air is 4749 m³/tonne.