Question:

In a 500 m race, P and Q have speeds in the ratio of 3 : 4. Q starts the race when P has already covered 140 m. What is the distance between P and Q (in m) when P wins the race?

Show Hint

When two people are running a race at different speeds, you can use the ratio of their speeds to find how much distance one covers when the other reaches the finish line.
  • 20
  • 40
  • 60
  • 140
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let the speeds of P and Q be \( 3x \) and \( 4x \) respectively. The total distance of the race is 500 m. P has already covered 140 m, so the remaining distance for P to cover is: \[ 500 - 140 = 360 \text{ m}. \] Since P takes time to cover 360 m, the time taken by P is: \[ \text{Time taken by P} = \frac{360}{3x} = \frac{120}{x}. \] Now, Q starts the race when P has covered 140 m. In the same time, the distance covered by Q is: \[ \text{Distance covered by Q} = \text{Speed of Q} \times \text{Time} = 4x \times \frac{120}{x} = 480 \text{ m}. \] Since the total length of the race is 500 m, the remaining distance between P and Q when P finishes the race is: \[ 500 - 480 = 20 \text{ m}. \] Thus, the distance between P and Q when P wins the race is 20 meters.
Was this answer helpful?
0
0

Top Questions on Logical and Analytical Reasoning Skills

View More Questions

Questions Asked in GATE EE exam

View More Questions