Given \( z = 1 + i \), compute \( z^2 \):
\[
z^2 = (1 + i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i + (-1) = 2i
\]
The modulus of a complex number \( a + bi \) is \( \sqrt{a^2 + b^2} \). For \( z^2 = 0 + 2i \):
\[
|z^2| = \sqrt{0^2 + 2^2} = \sqrt{4} = 2
\]
Alternatively, since \( |z| = \sqrt{1^2 + 1^2} = \sqrt{2} \), the modulus of \( z^2 \) is:
\[
|z^2| = |z|^2 = (\sqrt{2})^2 = 2
\]
The modulus is:
\[
\boxed{2}
\]