Question:

If \( z = 1 + i \), find the modulus of \( z^2 \).

Show Hint

For a complex number \( z \), the modulus of \( z^n \) is \( |z|^n \), and for \( z = a + bi \), the modulus is \( \sqrt{a^2 + b^2} \).
Updated On: May 24, 2025
  • \( \sqrt{2} \)
  • \( 2 \)
  • \( 2\sqrt{2} \)
  • \( 4 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given \( z = 1 + i \), compute \( z^2 \): \[ z^2 = (1 + i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i + (-1) = 2i \] The modulus of a complex number \( a + bi \) is \( \sqrt{a^2 + b^2} \). For \( z^2 = 0 + 2i \): \[ |z^2| = \sqrt{0^2 + 2^2} = \sqrt{4} = 2 \] Alternatively, since \( |z| = \sqrt{1^2 + 1^2} = \sqrt{2} \), the modulus of \( z^2 \) is: \[ |z^2| = |z|^2 = (\sqrt{2})^2 = 2 \] The modulus is: \[ \boxed{2} \]
Was this answer helpful?
0
0