Question:

If $ y=x{{e}^{2y}}, $ then find $\frac{ dy}{dx} $ .

Updated On: Jun 23, 2024
  • $\frac { y} {(x(1-2x))} $
  • $\frac { x} {(y\,(1-2x))} $
  • $\frac {x} {y(1-2y)} $
  • $\frac {y} {x(1-2y)} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We have $ y=x{{e}^{2y}} $ Taking log on both sides, we get $ \log y=\log (x{{e}^{2y}}) $
$ \Rightarrow $ $ \log y=\log x+2y\log e $
$ \Rightarrow $ $ \log y=\log x+2y $
On differentiating w. r. t. x, we get $ \frac{1}{y}\frac{dy}{dx}=\frac{1}{x}+2\frac{dy}{dx} $
$ \Rightarrow $ $ \frac{dy}{dx}\left( \frac{1}{y}-2 \right)=\frac{1}{x} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{1}{x}\times \frac{y}{(1-2y)} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{y}{x(1-2y)} $
Was this answer helpful?
0
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.