Question:

If $ y = \log \{ \log ( \log \:x)^2 \} $ then $\frac{dy}{dx}$ is equal to :

Updated On: Jul 6, 2022
  • $ \frac{1}{\log (\log \: x) }$
  • $ \frac{1}{x \: \log (\log \: x) }$
  • $ \frac{1}{x \:\log \: x . \log (\log \: x) }$
  • $ \frac{1}{2x \:\log \: 2x . \log (\log \: x) }$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $y = \log\left(\log \left(\log x\right)^{2}\right)$ $\therefore \:\:\: \frac{dy}{dx}=\frac{d}{dx} \left[\log \left\{\log \left(\log x\right)^{2}\right\}\right]$ $ = \frac{1}{\log \left(\log x\right)^{2}} \frac{d}{dx }\left[\log \left(\log x\right)^{2}\right]$ $=\frac{ 1}{\log\left(\log x\right)^{2}} \times\frac{1}{\left(\log x\right)^{2}} \times\frac{d}{dx}\left[\left(\log x\right)^{2}\right]$ $ = \frac{1}{\log \left(\log x\right)^{2}} \times\frac{1}{\left(\log x\right)^{2}} \times\frac{2 \log x}{x}$ $ = \frac{2}{x \log x.\log \left(\log x\right)^{2}} $ $= \frac{2}{2x \log x \log \left(\log x\right)} = \frac{1}{x \log x \log \left(\log x\right)}$
Was this answer helpful?
0
0

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.