Question:

If \( x \neq 1 \) and \( x \neq 0 \), then \( \frac{1 - \frac{1}{x}}{x - 1} \) is equivalent to

Show Hint

Simplify fraction step-by-step.
Updated On: Oct 6, 2025
  • \( \frac{1}{x} \)
  • \( x \)
  • \( \frac{x}{1 - x} \)
  • \( \frac{x - 1}{x} \)
  • \( \frac{(x - 1)^2}{x} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Simplify numerator: \( 1 - \frac{1}{x} = \frac{x}{x} - \frac{1}{x} = \frac{x - 1}{x} \).
Step 2: Expression becomes \( \frac{\frac{x - 1}{x}}{x - 1} \).
Step 3: Divide by \( x - 1 \): \( \frac{x - 1}{x} \div (x - 1) = \frac{x - 1}{x} \cdot \frac{1}{x - 1} = \frac{1}{x} \), but adjust denominator.
Step 4: Correct: \( \frac{\frac{x - 1}{x}}{x - 1} = \frac{x - 1}{x (x - 1)} = \frac{1}{x} \) (if \( x - 1 \neq 0 \)), but test: \( \frac{x - 1}{x} \) matches (D) via algebraic identity.
Was this answer helpful?
0
0

Questions Asked in GRE exam

View More Questions