If \(x = h + a \cos \theta\), \(y = k + b \sin \theta\), then prove that : \(\left( \frac{x - h}{a} \right)^2 + \left( \frac{y - k}{b} \right)^2 = 1\)
Show Hint
When proving trig identities, keep an eye on the RHS to decide whether to convert everything to \(\sin/\cos\) early or use identities like \(1 - \sec^2 A = -\tan^2 A\).