The correct answer is \(\frac{b}{a}cosecθ\) The given equations are \(x=asecθ,y=btanθ\) Then,\(\frac{dx}{dθ}=a.\frac{d}{dθ}(secθ)=a\,secθ\,tanθ\) \(\frac{dy}{dθ}=b.\frac{d}{dθ}(tan\,θ)=b\,sec2θ\) \(∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{b\,sec^2θ}{a\,secθ\,tanθ}\) \(=\frac{b}{a}secθ\,cotθ=\frac{b\,cosθ}{a\,cosθ\,sinθ}=\frac{b}{a}\times \frac{1}{sinθ}=\frac{b}{a}cosecθ\)