Question:

If xx and yy are connected parametrically by the equation,without eliminating the parameter,find dydx\frac{dy}{dx}.
x=sint,y=cos2tx=sin\,t,y=cos\,2t

Updated On: Sep 12, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The correct answer is 4sint-4sin\,t
The given equations are x=sint,y=cos2tx=sin\,t,y=cos\,2t
Then,dxdt=ddt(sint)=cost\frac{dx}{dt}=\frac{d}{dt}(sin\,t)=cos\,t
dydt=ddt(cos2t)=sin2t.ddt(2t)=2sin2t\frac{dy}{dt}=\frac{d}{dt}(cos\,2t)=-sin\,2t.\frac{d}{dt}(2t)=-2sin\,2t
dydx=(dydt)(dxdt)=2sin2tcost=2.2sintcostcost=4sint∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{2sin\,2t}{cos\,t}=\frac{-2.2sin\,tcos\,t}{cos\,t}=-4sin\,t
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions