The correct answer is \(∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-bsinθ}{-asinθ}=\frac{b}{a}\) The given equations are \(x= a\,cos\,θ,y=b\,cos\,θ\) Then,\(\frac{dx}{dθ}=\frac{d}{dθ}(a\,cos\,θ)=a(-sin\,θ))=-a\,sin\,θ\) \(\frac{dy}{dθ}=\frac{d}{dθ}(b\,cos\,θ)=b(-sinθ)=-bsinθ\) \(∴\frac{dy}{dx}=\frac{(\frac{dy}{dθ})}{(\frac{dx}{dθ})}=\frac{-bsinθ}{-asinθ}=\frac{b}{a}\)