It is given that (x3+1,y−23)=(53,13)(\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3})(3x+1,3y−2)=(35,31).
Since the ordered pairs are equal, the corresponding elements will also be equal.
(x3+1,y−23)=(53,13)(\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3})(3x+1,3y−2)=(35,31)
Therefore,
x3+1=53\frac {x}{3}+1=\frac {5}{3}3x+1=35
⇒ x3=53−1,y−23=13\frac{x}{3} = \frac{5}{3} -1,\frac{y-2}{3} = \frac{1}{3}3x=35−1,3y−2=31
⇒x3=23,y=13+23\frac{x}{3} = \frac{2}{3}, y = \frac{1}{3}+\frac{2}{3}3x=32,y=31+32
⇒ x=2, y=1
What inference do you draw about the behaviour of Ag+ and Cu2+ from these reactions?