It is given that \((\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3})\).
Since the ordered pairs are equal, the corresponding elements will also be equal.
\((\frac {x}{3}+1, \frac {y-2}{3}) = (\frac {5}{3}, \frac {1}{3})\)
Therefore,
\(\frac {x}{3}+1=\frac {5}{3}\)
⇒ \(\frac{x}{3} = \frac{5}{3} -1,\frac{y-2}{3} = \frac{1}{3}\)
⇒\(\frac{x}{3} = \frac{2}{3}, y = \frac{1}{3}+\frac{2}{3}\)
⇒ x=2, y=1
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
airship flagship lightship |
Temperature | Pressure thermometer A | Pressure thermometer B |
Triple-point of water | 1.250 × 10\(^5\) Pa | 0.200 × 10\(^5\) Pa |
Normal melting point of sulphur | 1.797× 10\(^5\) Pa | 0.287 × 10\(^5\) Pa |