Assume
\[
f(x) = (x^2 - 5x + 6)(x^2 + px + q).
\]
Expand:
\[
x^4 + p x^3 + q x^2 - 5x^3 - 5p x^2 - 5q x + 6 x^2 + 6 p x + 6 q.
\]
Collect like terms:
\[
x^4 + (p - 5) x^3 + (q - 5p + 6) x^2 + (-5q + 6p) x + 6 q.
\]
Compare with
\[
x^4 - 17x^3 + k x^2 - 247 x + 210,
\]
which gives:
\[
p - 5 = -17 \implies p = -12,
\]
\[
6 q = 210 \implies q = 35.
\]
Thus, the other quadratic factor is \( x^2 - 12x + 35 \).