\(\text{If} \begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = 7\ \text{and}\ \triangle = \begin{vmatrix} x^3 - 1 & 0 & x - x^4 \\ 0 & x - x^3 & x^3 - 1 \\ x - x^4 & x^3 - 1 & 0 \end{vmatrix}, \text{then}\)
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]