The problem states that the transpose of matrix A is matrix B, where:
\(A=\begin{bmatrix} 2a & 1 & 3b \\ 1 & 2 & 4c \\ 5 & 6 & 0 \end{bmatrix}\)
and
\(B=\begin{bmatrix} 4 & 1 & 5 \\ 1 & 2 & 6 \\ 9 & 3 & 0 \end{bmatrix}\)
Since B is the transpose of A, we have:
- \(2a = 4\), \(1 = 1\), \(3b = 9\)
- \(1 = 1\), \(2 = 2\), \(4c = 3\)
- \(5 = 5\), \(6 = 6\), \(0 = 0\)
Finding the unknowns:
- From \(2a = 4\), \(a = \frac{4}{2} = 2\)
- From \(3b = 9\), \(b = \frac{9}{3} = 3\)
- From \(4c = 3\), \(c = \frac{3}{4}\)
Now, calculate \(3a + 2b + 4c\):
- \(3a = 3 \times 2 = 6\)
- \(2b = 2 \times 3 = 6\)
- \(4c = 4 \times \frac{3}{4} = 3\)
- Total: \(6 + 6 + 3 = 15\)
Thus, the value of \(3a + 2b + 4c\) is: 15