Step 1: Identify the first term and common difference.
Given A.P.: \(25, 22, 19, \ldots\)
\[
a = 25,\quad d = 22 - 25 = -3
\]
Step 2: Use the formula for the sum of first \(n\) terms of an A.P.
\[
S_n = \frac{n}{2}\,[2a + (n-1)d]
\]
Given \(S_n = 116\):
\[
116 = \frac{n}{2}\,[2(25) + (n-1)(-3)]
\]
Step 3: Simplify the expression.
\[
116 = \frac{n}{2}\,[50 - 3n + 3]
\]
\[
116 = \frac{n}{2}\,(53 - 3n)
\]
Step 4: Solve for \(n\).
\[
232 = n(53 - 3n)
\]
\[
3n^2 - 53n + 232 = 0
\]
\[
(3n - 29)(n - 8) = 0
\]
\[
n = 8 \quad (\text{valid integer solution})
\]
Step 5: Find the last term.
The \(n\)th term of an A.P. is:
\[
a_n = a + (n-1)d
\]
\[
a_8 = 25 + 7(-3) = 25 - 21 = 4
\]
Step 6: Final conclusion.
The last term of the A.P. is \(\boxed{4}\).