It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.
⇒ Number of elements in set B = 3
Number of elements in (A x B)
= (Number of elements in A) x (Number of elements in B)
= 3 x 3 = 9
Thus, the number of elements in (A x B) is 9
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
Draw the Lewis structures for the following molecules and ions: \(H_2S\), \(SiCl_4\), \(BeF_2\), \(CO_3^{2-}\) , \(HCOOH\)
| λ (nm) | 500 | 450 | 400 |
|---|---|---|---|
| v × 10–5(cm s–1) | 2.55 | 4.35 | 5.35 |