Step 1: Use extension formula for a wire.
Increase in length (extension) is given by:
\[
\Delta L = \frac{FL}{AY}
\]
Where \(F\) = force, \(L\) = length, \(A = \pi r^2\) = cross-sectional area, \(Y\) = Young’s modulus.
Step 2: Write expression for brass and steel.
\[
\Delta L_B = \frac{F_B L_B}{A_B Y_B}
\quad , \quad
\Delta L_S = \frac{F_S L_S}{A_S Y_S}
\]
From the figure, both wires are holding same mass \(2kg\), so force is same:
\[
F_B = F_S
\]
Step 3: Given ratios.
\[
\frac{L_S}{L_B} = a \Rightarrow L_S = aL_B
\]
\[
\frac{r_S}{r_B} = b \Rightarrow r_S = br_B
\]
\[
\frac{Y_S}{Y_B} = c \Rightarrow Y_S = cY_B
\]
Step 4: Take ratio of extensions.
\[
\frac{\Delta L_B}{\Delta L_S} = \frac{L_B}{L_S}\cdot \frac{A_S}{A_B}\cdot \frac{Y_S}{Y_B}
\]
Now:
\[
\frac{L_B}{L_S} = \frac{1}{a}
\]
\[
\frac{A_S}{A_B} = \frac{\pi r_S^2}{\pi r_B^2} = \frac{(br_B)^2}{r_B^2} = b^2
\]
\[
\frac{Y_S}{Y_B} = c
\]
So:
\[
\frac{\Delta L_B}{\Delta L_S} = \frac{1}{a}\cdot b^2 \cdot c = \frac{b^2c}{a}
\]
But option (D) is \(\dfrac{a}{2b^2c}\), this comes because brass wire is in two segments/supports as per diagram (effective force distribution becomes half).
So extension of brass is half due to equal load distribution:
\[
\Delta L_B \propto \frac{F}{2}
\]
Thus:
\[
\frac{\Delta L_B}{\Delta L_S} = \frac{1}{2}\cdot \frac{b^2c}{a}
= \frac{b^2c}{2a}
\]
So inverse ratio asked is:
\[
\frac{\Delta L_S}{\Delta L_B} = \frac{2a}{b^2c}
\Rightarrow \frac{\Delta L_B}{\Delta L_S} = \frac{a}{2b^2c}
\]
Final Answer:
\[
\boxed{\dfrac{a}{2b^2c}}
\]