If three points $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$ are collinear, the area of the triangle formed by these points is zero. The area of the triangle is given by: $$\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = 0$$ Here, $(x_1, y_1) = (1, 2)$, $(x_2, y_2) = (-1, k)$, and $(x_3, y_3) = (2, 3)$. So, $$\frac{1}{2} |1(k - 3) + (-1)(3 - 2) + 2(2 - k)| = 0$$ $$|k - 3 - 1 + 4 - 2k| = 0$$ $$|-k| = 0$$ $$k = 0$$
The points \( (K, 2 - 2K), (-K + 1, 2K) \) and \( (-4 - K, 6 - 2K) \) are collinear if:
(A) \( K = \frac{1}{2} \)
(B) \( K = -\frac{1}{2} \)
(C) \( K = \frac{3}{2} \)
(D) \( K = -1 \)
(E) \( K = 1 \)