We are given the parabola: \[ y^2 = 4ax \] And the point \( (2a, 2a\sqrt{2}) \) lies on this parabola.
Step 1: Equation of the Normal at Point \( (2a, 2a\sqrt{2}) \) For a parabola \(y^2 = 4ax\), the equation of the normal at point \( (at^2, 2at) \) is given by: \[ y = -tx + 2at + at^3 \] From the given point \( (2a, 2a\sqrt{2}) \), Comparing with \( (at^2, 2at) \), \[ at^2 = 2a \quad \Rightarrow \quad t^2 = 2 \quad \Rightarrow \quad t = \sqrt{2} \]
Step 2: Equation of the Normal Using the normal equation formula: \[ y = -\sqrt{2}x + 2a\sqrt{2} + a(\sqrt{2})^3 \] \[ y = -\sqrt{2}x + 2a\sqrt{2} + 2a\sqrt{2} \] \[ y = -\sqrt{2}x + 4a\sqrt{2} \]
Step 3: Finding the Points Where the Normal Intersects the Parabola The normal chord meets the parabola at two points: the given point \( (2a, 2a\sqrt{2}) \) and another point symmetric to it.
Step 4: Angle Subtended at the Vertex The normal chord subtends an angle \( \theta \) at the vertex. Since the normal has slope \( -\sqrt{2} \), its inclination angle is: \[ \tan \theta = \left| \text{Slope of the Normal} \right| = \sqrt{2} \] \[ \theta = \tan^{-1} (\sqrt{2}) = 45^\circ \]
Since the chord is symmetric across the axis of the parabola and forms a right angle between the two tangents, the total angle is \( 90^\circ \).
Step 5: Final Answer
\[Correct Answer: (2) \ 90^\circ\]Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?