Step 1: The sequence contains \(101\) terms in A.P. with
first term \(a=1\) and last term \(l=1+100d\).
Step 2: Mean of an A.P.:
\[
\bar a=\frac{a+l}{2}=\frac{2+100d}{2}=1+50d.
\]
Step 3: Deviations from mean are symmetric about the central term.
For an A.P. of odd number of equally spaced terms \(x_i=\bar a+(i-50)d\),
mean deviation = average of \(|i-50|d\).
Step 4:
\[
\text{M.D.}= \frac{2}{101}\sum_{k=1}^{50} k d
=\frac{2}{101}\frac{50\cdot51}{2}d
=\frac{2550}{101}d.
\]
Step 5: Equate to 255:
\[
\frac{2550}{101}d=255 \Rightarrow d=10.
\]
Hence → (D).