Question:

If the lines \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-1}{4}\) and \(\dfrac{x-3}{1}=\dfrac{y-k}{2}=\dfrac{z}{1}\) intersect, then the value of \(k\) is

Show Hint

To check intersection of two lines in 3D, write parametric form and equate \(x,y,z\). Solve parameters and use remaining equation to find unknown constant.
Updated On: Jan 3, 2026
  • \(\dfrac{3}{2}\)
  • \(\dfrac{9}{2}\)
  • \(\dfrac{2}{9}\)
  • \(\dfrac{3}{2}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Write parametric form of first line.
Let parameter \(t\):
\[ x=1+2t,\quad y=-1+3t,\quad z=1+4t \] Step 2: Write parametric form of second line.
Let parameter \(s\):
\[ x=3+s,\quad y=k+2s,\quad z=s \] Step 3: At intersection, coordinates are equal.
From \(z\):
\[ 1+4t=s \] From \(x\):
\[ 1+2t=3+s \Rightarrow 1+2t=3+(1+4t) \Rightarrow 1+2t=4+4t \Rightarrow -3=2t \Rightarrow t=-\frac{3}{2} \] Then:
\[ s=1+4t=1+4\left(-\frac{3}{2}\right)=1-6=-5 \] Step 4: Use \(y\) equality to find \(k\).
First line:
\[ y=-1+3t=-1+3\left(-\frac{3}{2}\right)=-1-\frac{9}{2}=-\frac{11}{2} \] Second line:
\[ y=k+2s=k+2(-5)=k-10 \] Equate:
\[ k-10=-\frac{11}{2} \Rightarrow k=10-\frac{11}{2}=\frac{20-11}{2}=\frac{9}{2} \] Final Answer: \[ \boxed{\frac{9}{2}} \]
Was this answer helpful?
0
0