Given:
- A circle \( C_1: x^2 + y^2 - 4x - 6y - 12 = 0 \)
- Another circle \( C_2: x^2 + y^2 + p x + q y + r = 0 \) with radius 3 units
- \( C_2 \) touches \( C_1 \) internally at point \( (-1, -1) \)
Step 1: Find the center and radius of \( C_1 \).
Rewrite \( C_1 \):
\[
x^2 - 4x + y^2 - 6y = 12
\]
Complete the squares:
\[
(x^2 - 4x + 4) + (y^2 - 6y + 9) = 12 + 4 + 9 = 25
\]
\[
(x - 2)^2 + (y - 3)^2 = 25
\]
So, center of \( C_1 \) is \( O_1 = (2,3) \) and radius \( r_1 = 5 \).
Step 2: Center of \( C_2 \) is \( O_2 = \left(-\frac{p}{2}, -\frac{q}{2}\right) \) and radius \( r_2 = 3 \).
Step 3: Since the two circles touch internally at \( (-1, -1) \), the point lies on both circles:
Substitute \( (-1, -1) \) into \( C_2 \):
\[
(-1)^2 + (-1)^2 + p(-1) + q(-1) + r = 0
\]
\[
1 + 1 - p - q + r = 0 \implies 2 - p - q + r = 0
\]
\[
r = p + q - 2
\]
Step 4: The point \( (-1, -1) \) lies on the line joining the centers \( O_1 \) and \( O_2 \). Since the circles touch internally, centers and point of contact are collinear:
\[
\frac{-1 - 2}{x_2 - 2} = \frac{-1 - 3}{y_2 - 3}
\]
where \( (x_2, y_2) = \left(-\frac{p}{2}, -\frac{q}{2}\right) \). Substitute:
\[
\frac{-3}{-\frac{p}{2} - 2} = \frac{-4}{-\frac{q}{2} - 3}
\]
Simplify denominators:
\[
\frac{-3}{-\frac{p+4}{2}} = \frac{-4}{-\frac{q+6}{2}} \implies \frac{-3}{-\frac{p+4}{2}} = \frac{-4}{-\frac{q+6}{2}}
\]
Multiply numerator and denominator:
\[
\frac{-3}{-\frac{p+4}{2}} = \frac{-3 \times 2}{-(p+4)} = \frac{-6}{-(p+4)} = \frac{6}{p+4}
\]
Similarly:
\[
\frac{-4}{-\frac{q+6}{2}} = \frac{-4 \times 2}{-(q+6)} = \frac{-8}{-(q+6)} = \frac{8}{q+6}
\]
Equate:
\[
\frac{6}{p+4} = \frac{8}{q+6} \implies 6(q + 6) = 8(p + 4)
\]
\[
6q + 36 = 8p + 32 \implies 8p - 6q = 4
\]
Step 5: Distance between centers equals difference of radii (since internally tangent):
\[
|O_1 O_2| = r_1 - r_2 = 5 - 3 = 2
\]
Calculate distance:
\[
\sqrt{\left(-\frac{p}{2} - 2\right)^2 + \left(-\frac{q}{2} - 3\right)^2} = 2
\]
Square both sides:
\[
\left(-\frac{p}{2} - 2\right)^2 + \left(-\frac{q}{2} - 3\right)^2 = 4
\]
Rewrite:
\[
\left(\frac{p + 4}{2}\right)^2 + \left(\frac{q + 6}{2}\right)^2 = 4
\]
Multiply both sides by 4:
\[
(p + 4)^2 + (q + 6)^2 = 16
\]
Step 6: From step 4, \( 8p - 6q = 4 \implies 4p - 3q = 2 \).
Express \( q \) in terms of \( p \):
\[
4p - 3q = 2 \implies 3q = 4p - 2 \implies q = \frac{4p - 2}{3}
\]
Step 7: Substitute \( q \) into circle equation:
\[
(p + 4)^2 + \left( \frac{4p - 2}{3} + 6 \right)^2 = 16
\]
Simplify inside second bracket:
\[
\frac{4p - 2}{3} + 6 = \frac{4p - 2 + 18}{3} = \frac{4p + 16}{3}
\]
So:
\[
(p + 4)^2 + \left( \frac{4p + 16}{3} \right)^2 = 16
\]
Multiply both sides by 9:
\[
9 (p + 4)^2 + (4p + 16)^2 = 144
\]
Expand:
\[
9 (p^2 + 8p + 16) + (16 p^2 + 128 p + 256) = 144
\]
\[
9 p^2 + 72 p + 144 + 16 p^2 + 128 p + 256 = 144
\]
\[
25 p^2 + 200 p + 400 = 144
\]
\[
25 p^2 + 200 p + 256 = 0
\]
Divide by 25:
\[
p^2 + 8 p + \frac{256}{25} = 0
\]
Use quadratic formula:
\[
p = \frac{-8 \pm \sqrt{64 - 4 \times \frac{256}{25}}}{2} = \frac{-8 \pm \sqrt{64 - \frac{1024}{25}}}{2}
\]
\[
= \frac{-8 \pm \sqrt{\frac{1600 - 1024}{25}}}{2} = \frac{-8 \pm \sqrt{\frac{576}{25}}}{2} = \frac{-8 \pm \frac{24}{5}}{2}
\]
Two solutions:
\[
p = \frac{-8 + \frac{24}{5}}{2} = \frac{-\frac{40}{5} + \frac{24}{5}}{2} = \frac{-\frac{16}{5}}{2} = -\frac{8}{5}
\]
\[
p = \frac{-8 - \frac{24}{5}}{2} = \frac{-\frac{40}{5} - \frac{24}{5}}{2} = \frac{-\frac{64}{5}}{2} = -\frac{32}{5}
\]
Step 8: Find corresponding \( q \) values:
\[
q = \frac{4p - 2}{3}
\]
For \( p = -\frac{8}{5} \):
\[
q = \frac{4 \times -\frac{8}{5} - 2}{3} = \frac{-\frac{32}{5} - 2}{3} = \frac{-\frac{32}{5} - \frac{10}{5}}{3} = \frac{-\frac{42}{5}}{3} = -\frac{14}{5}
\]
For \( p = -\frac{32}{5} \):
\[
q = \frac{4 \times -\frac{32}{5} - 2}{3} = \frac{-\frac{128}{5} - 2}{3} = \frac{-\frac{128}{5} - \frac{10}{5}}{3} = \frac{-\frac{138}{5}}{3} = -\frac{46}{5}
\]
Step 9: Calculate \( p + q - r \) with \( r = p + q - 2 \) (from Step 3):
\[
p + q - r = p + q - (p + q - 2) = 2
\]
Therefore,
\[
\boxed{2}
\]