If a curve $ y = y(x) $ passes through the point $ \left(1, \frac{\pi}{2}\right) $ and satisfies the differential equation
$$
(7x^4 \cot y - e^x \csc y) \frac{dx}{dy} = x^5, \quad x \geq 1, \text{ then at } x = 2, \text{ the value of } \cos y \text{ is:}
$$