If \(\sin(sin^{-1}\frac{1}{5}+\cos^{-1}x)=1\) , then find the value of x.
\(\sin(sin^{-1}\frac{1}{5}+\cos^{-1}x)=1\)
\(\Rightarrow\sin(\sin^{-1}\frac{1}{5})\cos(\cos^{-1})+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1\)
[sin(A+B)=sinAcosB+cosAsinB]
\(\Rightarrow\frac{1}{5}*x+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1\)
\(\Rightarrow\frac{1}{5}+\cos(\sin^{-1}\frac{1}{5})\sin(\cos^{-1}x)=1\) .......(1)
Now, let sin-1\((\frac{1}{5})\)=y.
Then ,sin y=\(\frac{1}{5}\) \(\Rightarrow\) cos y= \(\sqrt{1-(\frac{1}{5}^2})=2\sqrt{\frac{6}{5}}\)
\(\Rightarrow\) \(\cos^{-1}(2\frac{\sqrt6}{5})\).
therefore sin-11/5=cos-1(2√6/5) .......(2)
let cos-1 x=z
Then cosz=x =>sinz=√1-x2
=>z=sin-1(√1-x2)
therefore cos-1x=sin-1(√1-x2) ....(3)
from (1),(2) and (3)
x/5+cos(cos-1(2√6/5)).sin(sin-1(√1-x2))=1
x/5+2√6/5.√1-x2=1
\(\Rightarrow\) x+2√6 \(\sqrt{1-x^2}\) =5
\(\Rightarrow\) 2√6 \(\sqrt{1-x^2}\) =5-x
On squaring both sides, we get:(4)(6)(1-x2)=25+x2-10x
\(\Rightarrow\) 24-24x2=25+x2-10x
\(\Rightarrow\) 25x2-10x+1=0
\(\Rightarrow\) (5x-1)2=0
\(\Rightarrow\) x=\(\frac{1}{5}\).
Hence, the value of x is \(\frac{1}{5}\)
The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1
= x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
= −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
= x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)