Using Einstein's photoelectric equation:
(K.E.)max = ε - φ where, ε is the energy of incident photon in eV, and φ is work function.
Given λ = hc/ε.
Thus, ε = hc/λ.
(K.E.)max = ε - φ
Einstein's Explanation of the Photoelectric Effect:
Einstein explained the photoelectric effect on the basis of Planck’s quantum theory, where light travels in the form of small bundles of energy called photons.
The energy of each photon is hν, where:
The number of photons in a beam of light determines the intensity of the incident light.When a photon strikes a metal surface, it transfers its total energy hν to a free electron in the metal.A part of this energy is used to eject the electron from the metal, and this required energy is called the work function.The remaining energy is carried by the ejected electron as its kinetic energy.
Which of the following microbes is NOT involved in the preparation of household products?
A. \(\textit{Aspergillus niger}\)
B. \(\textit{Lactobacillus}\)
C. \(\textit{Trichoderma polysporum}\)
D. \(\textit{Saccharomyces cerevisiae}\)
E. \(\textit{Propionibacterium sharmanii}\)
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Predict the major product $ P $ in the following sequence of reactions:
(i) HBr, benzoyl peroxide
(ii) KCN
(iii) Na(Hg), $C_{2}H_{5}OH$
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is: