Given the ratios:
\[
p : q = 1 : 2 \quad \text{(i.e., } p = \frac{q}{2} \text{)}
\]
\[
q : r = 4 : 3 \quad \text{(i.e., } q = \frac{4r}{3} \text{)}
\]
\[
r : s = 4 : 5 \quad \text{(i.e., } r = \frac{5s}{4} \text{)}
\]
We can write all terms in terms of \( s \). Start by expressing \( p \), \( q \), and \( r \) in terms of \( s \):
\[
r = \frac{5s}{4}
\]
\[
q = \frac{4r}{3} = \frac{4 \times \frac{5s}{4}}{3} = \frac{5s}{3}
\]
\[
p = \frac{q}{2} = \frac{\frac{5s}{3}}{2} = \frac{5s}{6}
\]
Now, \( u \) is 50% more than \( s \), so:
\[
u = 1.5s
\]
Thus, the ratio \( p : u \) is:
\[
\frac{p}{u} = \frac{\frac{5s}{6}}{1.5s} = \frac{5}{6 \times 1.5} = \frac{5}{9} = 1 : 5
\]
Step 1: Conclusion
The ratio \( p : u \) is \( 1 : 5 \), so the correct answer is (C).