Step 1: Determine the total number of elements in \(P \times P \times P\).
If a set has \(n\) elements, then \(P \times P \times P\) has \(n^3\) elements.
Here, \(P = \{1,2\}\) has \(2\) elements.
\[
|P \times P \times P| = 2^3 = 8
\]
Step 2: List all possible ordered triplets.
All possible elements of \(P \times P \times P\) are:
\[
(1,1,1), (1,1,2), (1,2,1), (1,2,2),
\]
\[
(2,1,1), (2,1,2), (2,2,1), (2,2,2)
\]
Step 3: Compare with the given set.
Given elements:
\[
(1,1,1), (1,1,2), (1,2,1), (2,1,2), (2,2,1), (2,2,2)
\]
Missing elements are:
\[
(1,2,2) \quad \text{and} \quad (2,1,1)
\]
Step 4: Identify the correct option.
Option (D) correctly lists the missing ordered triplets.