Question:

If $ \left\{ \begin{matrix} \frac{(1-\cos \,4x)}{{{x}^{2}}}, & if & x<0 \\ a, & if & x=0, \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & if & x>0 \\ \end{matrix} \right. $ then $ f(x) $ is continuous at $ x=0, $ for $a = ?$

Updated On: Jun 23, 2024
  • $ 4 $
  • $ \sqrt{32} $
  • $ 8 $
  • $ 16 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given, $ f(x)=\left\{ \begin{matrix} \frac{(1-\cos 4x)}{{{x}^{2}}}, & if & x<0 \\ a, & if & x=0 \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})-4}}, & if & x > 0 \\ \end{matrix} \right. $
LHL= $ f(0-0)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h) $
$ \underset{h\to 0}{\mathop{\lim }}\,\frac{1-\cos \,4(0-h)}{{{(0-h)}^{2}}} $
$ =\underset{h\to 0}{\mathop{\lim }}\,\frac{\left\{ \frac{{{(-4h)}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+..... \right\}}{{{(-h)}^{2}}} $
$ =\underset{h\to 0}{\mathop{\lim }}\,\,\left\{ \frac{\frac{16{{h}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+....}{{{(-h)}^{2}}} \right\} $
$ =\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{16}{2!}-\frac{{{4}^{2}}{{h}^{2}}}{4!}+.... $
RHL $ =f(0+0)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0+h) $
$ =\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{\sqrt{h}}{\sqrt{16+\sqrt{h}}-4} $
$ \left( \frac{0}{0}\,form \right) $
Using L- Hospital rule,
$ =\underset{h\to 0}{\mathop{\lim }}\,\,\frac{1}{2\sqrt{h}}\times \frac{1}{2\sqrt{16+\sqrt{h}\frac{1}{2\sqrt{h}}}} $
$ =\underset{h\to 0}{\mathop{\lim }}\,\,2\sqrt{16+\sqrt{h}}=2\sqrt{16+0} $
$ =2\times 4=8 $
Since, $ f(x) $ is continuous at $ x=0. $
$ \therefore $ $ LHL=RHL=f(0) $
$ \Rightarrow $ $ a=8 $
Was this answer helpful?
0
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.