Question:

If magnetic field \( B \) is perpendicular to surface area vector \( \mathbf{ds} \), then the magnetic flux on area \( ds \) will be:

Show Hint

Magnetic flux is maximum when \( B \) is parallel to \( \mathbf{ds} \) (\( \theta = 0^\circ \)) and zero when perpendicular (\( \theta = 90^\circ \)).
  • \( B\, ds \cos \theta \)
  • \( B\, ds \sin \theta \)
  • \( B\, ds \tan \theta \)
  • zero
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Magnetic flux \( \Phi \) through area \( ds \) is given by: \[ \Phi = B\, ds \cos \theta, \] where \( \theta \) is the angle between \( B \) and the area vector \( \mathbf{ds} \). If \( B \) is perpendicular to \( \mathbf{ds} \), then \( \theta = 90^\circ \), so: \[ \Phi = B\, ds \cos 90^\circ = 0. \]
Was this answer helpful?
0
0