When \( m \) parallel lines are intersected by \( n \) parallel lines, parallelograms are formed by choosing two lines from the \( m \) lines and two lines from the \( n \) lines. The number of ways to select 2 lines from \( m \) lines is \( \binom{m}{2} \) and the number of ways to select 2 lines from \( n \) lines is \( \binom{n}{2} \).
Thus, the total number of parallelograms formed is: \[ \binom{m}{2} \times \binom{n}{2} = \frac{m(m-1)}{2} \times \frac{n(n-1)}{2} \] Simplifying: \[ \frac{m(m-1) \times n(n-1)}{4} \]
Thus, the correct answer is \( \frac{m \times (m - 1) \times (n - 1)}{4} \).
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative