22
To find the number of digits in a number $N$, we use the formula:
Number of digits = $\lfloor \log_{10} N \rfloor + 1$
We are given $N = (648)^5$
So, $\log_{10}((648)^5) = 5 \log_{10}(648)$
Factorize: $648 = 2^3 \cdot 3^4$
So, $\log_{10}(648) = \log_{10}(2^3 \cdot 3^4) = 3 \log_{10}2 + 4 \log_{10}3$
= $3 \times 0.30103 + 4 \times 0.4771 = 0.90309 + 1.9084 = 2.81149$
Then, $\log_{10}((648)^5) = 5 \times 2.81149 = 14.05745$
Number of digits = $\lfloor 14.05745 \rfloor + 1 = 14 + 1 = \mathbf{15}$
Answer: (b) 15
Which letter replaces the question mark? A, D, G, J, M, ?