G = {7, 8} and H = {5, 4, 2}
We know that the Cartesian product P x Q of two non-empty sets P and Q is defined as :
P x Q = {(p, q): p∈P, q ∈Q}
∴G x H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}
H x G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}
A relation R is defined in the set N as follows:
R = (x, y) : x = y - 3, y > 3
Then, which of the following is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V. If the collision is elastic, which of the following (Fig. 5.14) is a possible result after collision ?
