Question:

If \(f(x) = \begin{cases}  1 + x & \text{if } 0 \leq x \leq 2 \\ 3 - x & \text{if } 2 < x \leq 3  \end{cases}\) , then \(f[f(x)]\) is

Updated On: Oct 4, 2024
  • \(f(f(x)) = \begin{cases} 2 + x & \text{if } 0 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \\ 4 - x & \text{if } 2 < x \leq 3  \end{cases}\)
  • \(f(f(x)) = \begin{cases} 2 + x & \text{if } -1 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \\ 4 - x & \text{if } 2 < x \leq 3  \end{cases}\)
  • \(f[f(x)] = \begin{cases} 2 + x & \text{if } 0 \leq x \leq 1 \\ 2 - x & \text{if } 1 \leq x \leq 2 \\ 4 - x & \text{if } 1 \leq x \leq 3 \\ x & \text{if } 0 \leq x \leq 1  \end{cases}\)
  • \(f(f(x)) = \begin{cases} 2 + x & \text{if } -1 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \\ 4 - x & \text{if } 2 \leq x < 3  \end{cases}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A): \(f(f(x)) = \begin{cases} 2 + x & \text{if } 0 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \\ 4 - x & \text{if } 2 < x \leq 3  \end{cases}\)
Was this answer helpful?
0
0