To determine the value of \( k \) such that \( f(x) \) is continuous at \( x = 0 \), we must ensure that \(\lim_{x \to 0} f(x) = f(0)\). Given: \( f(x)=\begin{cases} \frac{1-\cos4x}{x^2} & x\ne0 \\ k & x=0 \end{cases} \).
1. Calculate the limit \( \lim_{x \to 0} \frac{1-\cos4x}{x^2} \):
Using the Taylor series, \(\cos4x \approx 1 - \frac{(4x)^2}{2} + \cdots\), so \(1-\cos4x \approx \frac{16x^2}{2} = 8x^2\).
2. Substitute this back into the limit:
\(\lim_{x \to 0} \frac{1-\cos4x}{x^2} = \lim_{x \to 0} \frac{8x^2}{x^2} = \lim_{x \to 0} 8 = 8\).
3. Set the limit equal to \( f(0) \) for continuity:
\( \lim_{x \to 0} f(x) = f(0) = k \Rightarrow 8 = k \).
Hence, the value of \( k \) is 8.