When analyzing the parity of a function, check if \( f(-x) = f(x) \) (even) or \( f(-x) = -f(x) \) (odd). For monotonicity, compute the derivative of the function: if \( f'(x) > 0 \), the function is strictly increasing, and if \( f'(x) < 0 \), the function is strictly decreasing. A positive derivative over the entire domain typically indicates an increasing function.
To determine the nature of the function \( f(x) = 2\left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \), we will investigate its properties in terms of evenness or oddness and monotonicity.
1. Check for Oddness:
A function \( f(x) \) is odd if \( f(-x) = -f(x) \) for all \( x \). Calculate \( f(-x) \):
\( f(-x) = 2\left( \tan^{-1}(e^{-x}) - \frac{\pi}{4} \right) \)
Note that \( \tan^{-1}(e^{-x}) = \frac{\pi}{2} - \tan^{-1}(e^x) \). Therefore,
\( f(-x) = 2\left( \left( \frac{\pi}{2} - \tan^{-1}(e^x) \right) - \frac{\pi}{4} \right) = 2\left( \frac{\pi}{2} - \frac{\pi}{4} - \tan^{-1}(e^x) \right)\)
\( f(-x) = \left( \pi - 2\tan^{-1}(e^x) \right) - \frac{\pi}{2} = -2\left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) = -f(x) \)
Since \( f(-x) = -f(x) \), the function \( f(x) \) is odd.
2. Check for Monotonicity:
To check whether the function is strictly increasing or decreasing, we calculate its derivative \( f'(x) \).
\( f(x) = 2\left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \)
The derivative \( \frac{d}{dx}[\tan^{-1}(e^x)] = \frac{e^x}{1 + e^{2x}} \).
Therefore,
\( f'(x) = 2 \cdot \frac{e^x}{1 + e^{2x}} = \frac{2e^x}{1 + e^{2x}} \)
Observe that \( \frac{2e^x}{1 + e^{2x}} \) is positive for all \( x \). Thus, \( f(x) \) is strictly increasing for all \( (-\infty, \infty) \).
Conclusively, the function \( f(x) \) is odd and is strictly increasing over \( (-\infty, \infty) \).
Analyze the properties of \( f(x) = 2 \left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \):
Step 1: Check for Parity (Even or Odd):
To determine if \( f(x) \) is even or odd, we check if \( f(-x) = f(x) \) for evenness or \( f(-x) = -f(x) \) for oddness.
We start by substituting \( -x \) into the function \( f(x) \):
\[ f(-x) = 2 \left( \tan^{-1}(e^{-x}) - \frac{\pi}{4} \right) \]
Using the property of the inverse tangent function, \( \tan^{-1}(e^{-x}) = \frac{\pi}{4} - \tan^{-1}(e^x) \), we get:
\[ f(-x) = 2 \left( \left( \frac{\pi}{4} - \tan^{-1}(e^x) \right) - \frac{\pi}{4} \right) \]
Simplifying:
\[ f(-x) = -2 \tan^{-1}(e^x) \]
Since \( f(x) = 2 \left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \), we have:
\[ f(-x) = -f(x) \]
This confirms that \( f(x) \) is an odd function.
Step 2: Check for Monotonicity (Increasing or Decreasing):
To check whether \( f(x) \) is increasing or decreasing, we compute its derivative \( f'(x) \).
We differentiate \( f(x) = 2 \left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \) with respect to \( x \):
\[ f'(x) = 2 \cdot \frac{d}{dx} \left( \tan^{-1}(e^x) \right) \]
The derivative of \( \tan^{-1}(e^x) \) is:
\[ \frac{d}{dx} \left( \tan^{-1}(e^x) \right) = \frac{e^x}{1 + e^{2x}} \]
Thus,
\[ f'(x) = \frac{2e^x}{1 + e^{2x}} \]
Since \( e^x > 0 \) for all \( x \), and the denominator \( 1 + e^{2x} > 0 \), we conclude that \( f'(x) > 0 \) for all \( x \in (-\infty, \infty) \). Therefore, \( f(x) \) is strictly increasing.
Conclusion:
\( f(x) \) is an odd function and strictly increasing over \( (-\infty, \infty) \), verifying that option (3) is correct.