Question:

If $ f(x)={{(1+x)}^{n}}, $ then the value of $ f(0)+f'(0)+\frac{f'\,'(0)}{2!}+.....+\frac{{{f}^{(n)}}(0)}{n!} $ is equal to

Updated On: Jun 23, 2024
  • $ {{2}^{n-1}} $
  • $ 2\,n $
  • $ n $
  • $ {{2}^{n}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given, $ f(x)={{(1+x)}^{n}} $
On differentiating w. r. t. x, we get
$ f'(x)=n{{(1+x)}^{n-1}} $
Again, differentiating, we get
$ f''(x)=n(n-1)\,{{(1+x)}^{n-2}} $
$ \therefore $ $ {{f}^{n}}(x)=n(n-1).....\,\,\,3.2.1=n! $
$ \therefore $ $ f(0)+f'(0)+\frac{f''(0)}{2!}+....\frac{{{f}^{n}}(0)}{n!} $
$ =1+n+\frac{n(n-1)}{2!}+....+\frac{n!}{n!} $
$ {{=}^{n}}{{C}_{0}}{{+}^{n}}{{C}_{1}}{{+}^{n}}{{C}_{2}}+...{{+}^{n}}{{C}_{n}} $
$ ={{2}^{n}} $
Was this answer helpful?
0
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.