Question:

If \( e^x = y + \sqrt{1 + y^2} \), then the value of \( y \) is

Show Hint

Use algebraic manipulation to isolate the desired variable in exponential equations.
Updated On: Jan 12, 2026
  • \( \frac{1}{2} (e^x - e^{-x}) \)
  • \( \frac{1}{2} (e^x + e^{-x}) \)
  • \( e^x \)
  • \( e^x + 2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Isolate y.
Rearranging the given equation \( e^x = y + \sqrt{1 + y^2} \), we can solve for \( y \). The solution simplifies to \( y = \frac{1}{2} (e^x - e^{-x}) \).
Step 2: Conclusion.
The correct answer is (A), \( \frac{1}{2} (e^x - e^{-x}) \).
Was this answer helpful?
0
0

Top Questions on Functions

View More Questions