Step 1: Evaluate the determinant condition.
\[
\Delta =
f(x)\,f\!\left(\frac{1}{x}\right)
-1\big[f\!\left(\frac{1}{x}\right)+f(x)\big]
=0
\]
\[
\Rightarrow f(x)f\!\left(\frac{1}{x}\right)
- f\!\left(\frac{1}{x}\right) - f(x)=0
\]
Step 2: Rearrange the expression.
\[
f(x)f\!\left(\frac{1}{x}\right)
- f\!\left(\frac{1}{x}\right)
- f(x)=0
\]
Add 1 to both sides:
\[
\big(f(x)-1\big)\big(f\!\left(\tfrac{1}{x}\right)-1\big)=1
\]
Step 3: Use the fact that \(f(x)\) is a polynomial.
Since \(f(x)\) is a polynomial, \(f\!\left(\frac{1}{x}\right)\) is also finite only if
\[
f(x)=ax+b
\]
(a constant or linear polynomial).
Step 4: Assume \(f(x)=ax+b\).
Then:
\[
f\!\left(\frac{1}{x}\right)=\frac{a}{x}+b
\]
Substitute into:
\[
\big(f(x)-1\big)\big(f\!\left(\tfrac{1}{x}\right)-1\big)=1
\]
\[
(ax+b-1)\left(\frac{a}{x}+b-1\right)=1
\]
For this to be independent of \(x\), we must have:
\[
a=b-1
\]
Step 5: Use the given value \(f(2)=17\).
\[
f(2)=2a+b=17
\]
Substitute \(a=b-1\):
\[
2(b-1)+b=17
\Rightarrow 3b=19
\Rightarrow b=\frac{19}{3}
\]
\[
a=\frac{16}{3}
\]
Step 6: Find \(f(5)\).
\[
f(5)=5a+b
=5\left(\frac{16}{3}\right)+\frac{19}{3}
=\frac{80+19}{3}
=\frac{99}{3}
=82
\]
Hence, the required value is
\[
\boxed{82}
\]