-2
\(\frac{1}{2}\)
\(-(\frac{1}{2})\)
2
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
When a vector is multiplied by a scalar quantity, the magnitude of the vector changes in proportion to the scalar magnitude, but the direction of the vector remains the same.
In contrast, the scalar has only magnitude, and the vectors have both magnitude and direction. To determine the magnitude of a vector, we must first find the length of the vector. The magnitude of a vector formula denoted as 'v', is used to compute the length of a given vector ‘v’. So, in essence, this variable is the distance between the vector's initial point and to the endpoint.