The unit circle $S$ has radius 1, so $g^2 + f^2 - c = 1$. Circle $S'$ is: \[ x^2 + y^2 - 6x - 8y + 4 \implies (x-3)^2 + (y-4)^2 = 4^2 + (-4)^2 - 2 = 25 \] Center: $(3, 4)$, radius: $\sqrt{25} = 5$. The circles touch externally at $(-1, -3)$, so the distance between centers equals the sum of radii ($1 + 5 = 6$). Point $(-1, -3)$ lies on $S$: \[ (-1)^2 + (-3)^2 + 2g(-1) + 2f(-3) + c = 0 \] \[ 1 + 9 - 2g - 9f + 3 = 0 \implies 10 - 2g - 6f + c = 0 \implies c = 2g + 6f - 10 \] Since radius = 1: \[ g^2 + f^2 - c = 1 \implies g^2 + f^2 - (2g + 6f - 10) = 1 \implies g^2 + f^2 - 2g - 6f + 9 = 0 \] Distance between centers $(3, 4)$ and $(-g, -f)$: \[ \sqrt{(3 - (-g))^2 + (4 - (-f))^2} = \sqrt{(g + 3)^2 + (f - 4)^2} = 6 \] \[ (g + 3)^2 + (f - 4)^2 = 36 \] The common tangent at $(-1, -3)$ has equation derived from $S'$’s tangent: \[ x(-1) + y(-3) - 3(x - 1) + 3(y - 3) + 2 = 0 \] \[ -x - 3y - 3x + 3 + 3y - 9 + 2 = -4x - 4 = 0 \implies x = -1 \] Since centers are collinear with $(-1, -3)$, the slope condition gives: \[ \frac{-f - (-3)}{-g - (-1)} = \frac{4 - (-3)}{3 - (-1)} \implies \frac{-f + 3}{-g + 1} = \frac{7}{4} \] \[ 4(-f + 3) = 7(-g + 1) \implies -4f + 12 = -7g + 7 \implies 7g - 4f = -5 \] Solve: \[ g^2 + f^2 - 2g - 6f + 9 = 0 \quad (1) \] \[ (g + 3)^2 + (f - 4)^2 = 36 \quad (2) \] \[ 7g - 4f = -5 \quad (3) \] From (3), $f = \frac{7g + 5}{4}$. Substitute into (1) and (2): \[ g^2 + \left( \frac{7g + 5}{4} \right)^2 - 2g - 6 \left( \frac{7g + 5}{4} \right) + 9 = 0 \] \[ g^2 + \frac{49g^2 + 70g + 25}{16} - 2g - \frac{42g + 30}{4} + 9 = 0 \] Multiply by 16: \[ 16g^2 + 49g^2 + 70g + 25 - 32g - 168g - 120 + 144 = 0 \] \[ 65g^2 - 130g + 49 = 0 \implies 13g^2 - 26g + 7 = 0 \] \[ g = \frac{26 \pm \sqrt{676 - 364}}{26} = \frac{26 \pm \sqrt{312}}{26} = \frac{26 \pm 2\sqrt{78}}{26} = \frac{13 \pm \sqrt{78}}{13} \] Test $g = \frac{13 + \sqrt{78}}{13}$: \[ f = \frac{7 \left( \frac{13 + \sqrt{78}}{13} \right) + 5}{4} = \frac{7(13 + \sqrt{78}) + 65}{52} = \frac{156 + 7\sqrt{78}}{52} = \frac{78 + \frac{7}{2}\sqrt{78}}{26} \] \[ c = 2g + 6f - 10 \] This yields $g + f + c \approx 25$ after numerical approximation. Option (4) is correct. Options (1), (2), and (3) do not match.